USA
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison BYINTEK MOON K45 Smart vs BYINTEK MOON K25 Smart

Add to comparison
BYINTEK MOON K45 Smart
BYINTEK MOON K25 Smart
BYINTEK MOON K45 SmartBYINTEK MOON K25 Smart
Expecting restockOutdated Product
TOP sellers
Main functionhomehome
Operating systemAndroid 9.0Android 9.0
Lamp and image
Lamp typeLEDLED
Number of lamps1
Service life10000 h30000 h
Service life (energy-saving)30000 h
Brightness ANSI Lumens700 lm600 lm
Dynamic contrast18 000:118 000:1
Colour rendering16 million colors
Projection system
TechnologyLCDLCD
Real resolution1920x1080 px1920x1080 px
Max. video resolution1920x1080 px
Image format support4:3, 16:916:9, 4:3
Projecting
Rear projection
Throw distance, min1.5 m1.5 m
Throw distance, max6.65 m6.65 m
Image size1.27 — 5.84 m1.27 – 5.08 m
Throw ratio1.3:11.56:1
Zoom and focusmotorizedmotorized
Autofocus
Auto keystone correction
Keystone correction (vert), ±50 °15 °
Keystone correction (horizontal), ±15 °
Features
Bluetoothv 4.0v 4.0
Wi-FiWi-Fi 5 (802.11ac)Wi-Fi 5 (802.11ac)
AirPlay+
Chromecast
Miracast
Hardware
CPUMT9255
RAM1000 MB1000 MB
Built-in memory16 GB8 GB
USB 2.022
Number of speakers21
Sound power10 W5 W
Video connectors
 
composite
HDMI inputs22
HDMI versionv 2.0v 1.4
Audio connectors
3.5 mm output (mini-Jack)
3.5 mm output (mini-Jack)
General
Power sourcemainsmains
Power consumption133 W
Size (HxWxD)93х290х220 mm108x320x230 mm
Weight2.5 kg2.5 kg
Color
Added to E-Catalognovember 2023march 2023

Number of lamps

The number of lamps provided in the design of the projector.

Most modern projectors have one lamp, but there are also multi-lamp models. More lamps increase the light flow and, accordingly, the brightness of the image provided by the projector. In addition, in models with 4 lamps, it may be possible to continue working even if one of the lamps burns out — the brightness of the remaining ones is enough to provide the desired brightness. In two-lamp versions, most often you have to change a burned-out lamp.

Service life

Minimum projector lamp life as stated by the manufacturer. Specified by the total time of continuous operation. Note that if the projector was operated without violations, then upon reaching this time, the lamp will not necessarily fail — on the contrary, it can work for quite a long time. However, when evaluating durability, it is best to focus on the claimed service life.

Service life (energy-saving)

When working in economy mode, the brightness of the backlight is noticeably reduced, on average by 30-50%. With a decrease in brightness, heat dissipation also decreases, which saves the working life of the illuminator, thereby increasing the lamp life. Thus, the ECO mode allows you to extend the lamp life by an average of 30%. If the typical projector lamp life is 4000 hours, regular use of the ECO mode will extend the backlight life to approximately 5500 hours.

Brightness ANSI Lumens

This parameter largely determines the ability of the projector to work in a well-lit room. For a dark room, 1000 lumens is enough to make the projection picture bright, rich, clear and understandable. But when working in a lit room, the projector will need at least 3500-4000 lumens. Do not confuse ANSI lumens with Peak lumens. These are two different brightness standards. To convert one type of brightness to another, you need to multiply Peak lumens by 10-12. The result will be an approximate value of ANSI Lumens.

However, experts do not recommend chasing high ANSI lumen brightness values. There are many professional projectors with brightness up to 3500 lm. The lower the brightness, the lower the power consumption, and at the same time, the life of the illuminator increases. Of course, if the projector will be installed in a work office or classroom where good lighting is required, it is recommended to purchase a model with ANSI Lumens brightness of 4000 lumens and more.

Colour rendering

The number of individual colour shades that the projector is capable of displaying.

The minimum indicator for modern projection technology is actually 16 million colours (more precisely, 16.7 million is a standard number associated with the features of digital image processing). In the most advanced models, this value can exceed 1 billion. However, two nuances should be taken into account here: firstly, the human eye is able to recognize only about 10 million colour shades, and secondly, not a single modern image output device (projectors, monitors, etc.) cannot cover the entire spectrum of colours visible to the human eye. Therefore, impressive colour performance is more of a marketing ploy than a real indicator of image quality, and in fact it makes sense to pay attention to other characteristics — primarily brightness and contrast (see above), as well as specific data like a colour gamut chart.

Max. video resolution

The actual maximum frame resolution that the projector is capable of processing and displaying.

Many models allow project images at a higher resolution than the actual resolution of the projector matrix (see above). For example, a 1920x1080 video can be displayed on a device with a frame size of 1024x768. However, the quality of such an image will be noticeably lower than on a projector, which initially has a resolution of 1920x1080.

The maximum resolution is closely related to both the overall picture quality and the size of the projection screen. The higher the resolution, the sharper the image details become. Of course, the screen size itself should be taken into account. The fact is that on a 40-50″ projection surface there will not be much difference between the Quad HD and 4K formats. A high-resolution picture will be able to show itself on a truly large screen.

Image format support

Image formats supported by the projector.

In this case, format means the aspect ratio of the image. The general rule in this case is that the projector must support the same format in which the original content is recorded. Otherwise, the image will either be stretched in height or width, or with black stripes on the sides or top-bottom. Specifically, the formats can be divided into three main categories:

— Traditional, or rectangular. Classic formats in which the height of the picture is not much less than the width. The most popular options are 4:3, widely used in analogue TV, and 5:4, common in computer technology. Traditional formats are well suited for presentations, working with documents and graphics, and other similar tasks.

Widescreen — formats in which the frame width is significantly (more than 1.5 times) greater than the height. The most popular of these standards are 16:9 and 16:10. These aspect ratios are well suited for games and movies; in particular, most high-definition content (HD 720p and above) is recorded in widescreen format.

Extra wide. The formats are even wider than the widescreen ones described above — for example, 21:9. Mainly used in cinematography.

It is worth noting that many modern projectors are able to work with several types of formats at once — for example, with classic 4:3 and...wide-angle 16:9.

Rear projection

The ability of the projector to operate in the rear projection mode (“mirroring” the image).

There are two main types of rear projection. Most often, horizontal mirroring is found in projectors — it is used when installing the device behind a translucent screen. Vertical inversion, in turn, is used in projectors with fixed keystone correction — due to their design, when mounted under the ceiling, such devices must be turned upside down, which requires the corresponding correction of the displayed image.

Image size

Diagonal size of the image projected by the projector. Usually, it is indicated as a range — from the smallest, at the minimum throw distance, to the largest, at the maximum. About throw distances, see above; here it is worth saying that the choice of diagonal size depends both on the distance between the screen and the audience, and on the format of the projector. For example, to watch a video, the best option is the situation when the distance from the viewer to the image corresponds to 3-4 diagonals, and a relatively large picture can be useful for working with presentations. More detailed recommendations for different situations can be found in special sources; here we only recall that the image must fit on the screen used with the projector.
BYINTEK MOON K45 Smart often compared