USA
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison Xiaomi Mi 4K Laser Projector 150 vs Samsung The Premiere LSP9T

Add to comparison
Xiaomi Mi 4K Laser Projector 150
Samsung The Premiere LSP9T
Xiaomi Mi 4K Laser Projector 150Samsung The Premiere LSP9T
from $2,199.99 
Expecting restock
Compare prices 13
TOP sellers
Main functionhomehome
Operating systemAndroid TV 9.0
Smart TV (proprietary system) /TIZEN/
Lamp and image
Lamp typeLaser-LEDLaser-LED
Service life25000 h20000 h
Brightness ANSI Lumens1500 lm2200 lm
Static contrast3 000:11 000:1
Dynamic contrast2 000 000:1
Projection system
TechnologyDLPDLP
Size0.47"
Real resolution3840x2160 px3840x2160 px
Image format support16:9, 16:10, 4:316:9, 16:10, 4:3
HDR support
Colour enhancement
 /PurColor/
Projecting
Rear projection
Throw distance, min0.14 m0.11 m
Throw distance, max0.5 m0.24 m
Image size80 – 150 "100 – 130 "
Throw ratio0.233:1
Zoom and focusmanualmotorized
Auto keystone correction
Features
Features
DLNA support
voice control
voice assistant
DLNA support
voice control
voice assistant /Bixby, Amazon Alexa/
Bluetoothv 4.2
Wi-FiWi-Fi 5 (802.11ac)
Chromecast
Miracast
Hardware
RAM2048 MB
Built-in memory16 GB
USB 2.011
Number of speakers44
Subwoofer
 /2/
Sound power30 W40 W
HDMI inputs33
Audio connectors
3.5 mm input (mini-Jack)
3.5 mm output (mini-Jack)
optical
 
 
optical
Service connectors
 
LAN (RJ-45)
COM port (RS-232)
LAN (RJ-45)
General
Noise level (nominal)32 dB
Power sourcemainsmains
Power consumption320 W
Size (HxWxD)88x410x291 mm141x550x367 mm
Weight11.5 kg
Color
Added to E-Catalogoctober 2021march 2021

Operating system

Smart TV (proprietary system). The operating system of the projector is represented by the proprietary software shell of the manufacturer. Usually such operating systems have an attractive and convenient menu, similar to a traditional Smart TV. A proprietary operating system is developed by the manufacturer for the hardware resources of a particular projector model or a whole line. But, as practice shows, compared to the classic Smart TV, the functionality of proprietary system often has significant limitations, and the system itself, in fact, is a stripped-down version of a full-fledged Smart TV.

Smart TV (Android AOSP). This type of operating system is a modification of the popular Android OS, mainly notable for being open source. It is a versatile operating system that gives the user much more freedom to create changes and customizations within the system. At the same time, the installation and work stability of certain applications on this platform are not guaranteed, and the overall system management was not specially “tailored” for large screens, which may cause some inconvenience. First of all, such solutions will will generate interest among users who understand the features of the Android OS, like to customize and control everything, and have time for this.

Android TV. This type of projector has full-fledged Android TV software, spec...ially adapted to work on large screens. In accordance with the name, it is a type of Android OS, specially designed for projectors/TVs, etc. In addition to the common features of all “Androids” (such as the ability to install additional applications, including even games), it has a number of special features: optimized interface, integration with smartphones (including the ability to use them as a remote control), voice search, etc. Thanks to this, TVs with this feature are significantly superior in functionality to models with a Smart TV. Of course, a dedicated processor, graphics subsystem and memory are provided for the operation of a multifunctional OS, and the presence of such hardware resources is reflected in the total cost of the projector. Given the same optical design, models with Android TV will cost more than classic projectors with a simple multi-line menu.

Service life

Minimum projector lamp life as stated by the manufacturer. Specified by the total time of continuous operation. Note that if the projector was operated without violations, then upon reaching this time, the lamp will not necessarily fail — on the contrary, it can work for quite a long time. However, when evaluating durability, it is best to focus on the claimed service life.

Brightness ANSI Lumens

This parameter largely determines the ability of the projector to work in a well-lit room. For a dark room, 1000 lumens is enough to make the projection picture bright, rich, clear and understandable. But when working in a lit room, the projector will need at least 3500-4000 lumens. Do not confuse ANSI lumens with Peak lumens. These are two different brightness standards. To convert one type of brightness to another, you need to multiply Peak lumens by 10-12. The result will be an approximate value of ANSI Lumens.

However, experts do not recommend chasing high ANSI lumen brightness values. There are many professional projectors with brightness up to 3500 lm. The lower the brightness, the lower the power consumption, and at the same time, the life of the illuminator increases. Of course, if the projector will be installed in a work office or classroom where good lighting is required, it is recommended to purchase a model with ANSI Lumens brightness of 4000 lumens and more.

Static contrast

The static contrast of the image provided by the projector.

Static contrast refers to the maximum difference between the brightest white light and the darkest black that a projector can provide within a single frame. Unlike dynamic contrast (see below), this parameter describes not conditional, but quite real capabilities of the device, achievable without the use of any additional tricks like auto-brightness. And since the quality of colour reproduction and detailing depend on contrast, the higher this indicator, the lower the likelihood that details will be indistinguishable in bright or dark areas.

Dynamic contrast

The dynamic image contrast provided by the projector.

Dynamic contrast ratio is the ratio between the brightest white and darkest black colour that a projector can produce. Recall that the quality of colour reproduction and detailing depend on contrast, the higher this indicator, the lower the likelihood that details will be indistinguishable in bright or dark areas. However, dynamic contrast is a rather specific parameter. The fact is that when it is calculated, the brightest white at the maximum brightness settings and the darkest black at the minimum are taken into account. As a result, the figures in this column can be very impressive, but it is impossible to achieve such a contrast within one frame.

By introducing this parameter, the manufacturers went to a certain trick. However, this is not to say that dynamic contrast has nothing to do with image quality at all. Projectors can use automatic brightness control, in which the overall brightness, depending on the "picture" on the screen, can increase or decrease. This format of work is based on the fact that the human eye does not need too bright areas on a general dark background and very dark areas on a bright one, the image is normally perceived even without it. The maximum brightness difference achievable in this mode of operation is exactly what described by dynamic contrast.

Size

The size of the panel/chip affects the depth and final quality of the image. The larger the panel/chip, the more light it is able to process, which means the picture will be clearer and more structured. The average projector has a sensor of 0.5-0.7″, advanced projectors use sensors of 1.2-1.5″ and more.

Colour enhancement

The projector supports a particular colour enhancement technology.

Such technologies usually involve software image processing to provide brighter and/or more accurate colours. Specific processing methods may be different, some manufacturers do not specify technical details at all, limiting themselves to advertising statements. The effect of using such technologies can also vary: in some cases it is clearly visible, in others it is almost absent, depending on the features of the picture.

Rear projection

The ability of the projector to operate in the rear projection mode (“mirroring” the image).

There are two main types of rear projection. Most often, horizontal mirroring is found in projectors — it is used when installing the device behind a translucent screen. Vertical inversion, in turn, is used in projectors with fixed keystone correction — due to their design, when mounted under the ceiling, such devices must be turned upside down, which requires the corresponding correction of the displayed image.

Throw distance, min

The closest distance to the screen that the projector can be used on. Typically, this is the minimum distance at which the image from the projector remains in focus.

This parameter is especially important if the device is to be placed at a small distance from the screen (for example, in a cramped room). Some modern projectors are able to work normally at a distance of 10 – 20 cm. Also note that the throw distances are determined primarily by the lens, and if the initial range of these distances does not suit you, perhaps the situation can be solved by replacing the optics.
Xiaomi Mi 4K Laser Projector 150 often compared
Samsung The Premiere LSP9T often compared