USA
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison Epson EB-695Wi vs Epson EB-670

Add to comparison
Epson EB-695Wi
Epson EB-670
Epson EB-695WiEpson EB-670
Compare prices 1
from $2,337.52
Outdated Product
TOP sellers
Main functionpresentationspresentations
Lamp and image
Lamp typeUHE
Service life
5000 h /10000 h in economy mode/
5000 h
Service life (energy-saving)10000 h
Lamp power250 W215 W
Brightness
3500 lm /2900 h in economy mode/
Brightness ANSI Lumens3100 lm
Dynamic contrast14 000:114 000:1
Colour rendering1 billion colors1 billion colors
Horizontal frequency15 – 92 kHz
Frame rate50 – 85 Hz
Sensor
Technology3LCD3LCD
Sensor size0.59"0.55"
Real resolution1280x800 px1280x768 px
Image format support16:10, 4:3, 16:94:3
Projecting
Rear projection
Image size1.5 – 2.54 m1.4 – 2.4 m
Throw ratio0.28:1 – 0.37:10.32:1
Digital zoom1.35 x
Zoom and focusmanualmanual
Keystone correction (vert), ±3 °3 °
Keystone correction (horizontal), ±3 °3 °
Features
Features
MHL support
interactive pen
MHL support
 
Wi-FiWi-Fi ready (optional)
Hardware
USB 2.01
Number of speakers11
Sound power16 W16 W
Video connectors
VGA /1 input, 1 output/
composite
VGA /2/
composite
HDMI inputs33
HDMI versionv 1.4v 1.4
Audio connectors
microphone input
3.5 mm input (mini-Jack) /2/
3.5 mm output (mini-Jack)
RCA (audio)
microphone input
3.5 mm input (mini-Jack)
 
 
Service connectors
COM port (RS-232)
USB (slave)
LAN (RJ-45)
COM port (RS-232)
USB (slave)
LAN (RJ-45)
General
Noise level (nominal)30 dB35 dB
Noise level (energy-saving / quiet)28 dB
Power sourcemainsmains
Power consumption
317 W /230 W in economy mode/
Size (HxWxD)187x367x400 mm149x367x400 mm
Weight5.8 kg5.7 kg
Color
Added to E-Catalogjune 2017april 2017

Lamp type

— HD (High-intensity discharge). General name for gas discharge lamps, i.e. lamps in which the light flow is created by an electrical discharge between the electrodes inside the bulb. In the case of projectors, such lamps can be mercury, metal-halide, and xenon (see above for more details).

LED. LEDs are used as a light source. They provide high brightness with low power consumption.

Laser-LED. Light source based on laser LEDs. It has even greater brightness than classic LED, with relatively low power consumption.

— UHP (Ultra-high performance) — a high-pressure mercury lamp, developed by Philips. Compared to other lamps, it consumes less power, while not inferior in brightness. Projectors on such lamps are smaller and lighter than conventional ones due to a smaller power supply, the cooler operates with a lower noise level. The creators claimed a service life of up to 10,000 hours. One of the most popular types of lamps for projectors today

– UHE (Ultra-High Energy). Variety of UHP lamps (see above).

— UHB (Ultra-high brightness). Another kind of UHP lamps (see above).

— NSH (New Super High Pressure). Also applies to high pressure mercury lamps manufactured by Ushio. Somewhat less popular than UHP and its peers, but also widespread. Estimated operating time is about...2000 hours.

— SHP. High pressure mercury lamps manufactured by Phoenix.

— P-VIP (Video Projector) — a high-pressure mercury lamp from OSRAM. High brightness lamps, service life — 4000 — 6000 hours.

—UHM (Ultra High Performance Lamp of Matsushita) is a high pressure mercury lamp manufactured by Panasonic. Сan be easily changed, operating time, depending on type — 2000 — 5000 hours.

— Xenon. The design and principle of operation of such lamps are similar to high-pressure mercury lamps — light is created due to a discharge in a gaseous medium. However, instead of mercury vapor, in this case, an inert xenon gas under high pressure is used. This allows to create high power lamps (from 2 kW) with the appropriate light flow. Xenon lamps are used primarily in professional models.

— HPM. High-pressure mercury lamp technology developed by Sony and used primarily in its projectors (although other brands are also available). Combines compact size and relatively low cost with high brightness.

— DC. Abbreviation for "direct current". In the case of projector lamps, this designation usually refers to mercury lamps powered by direct current. The operating voltage of such lamps in different models of projectors may be different. Their design usually uses various tricks to improve performance compared to conventional lamps of this type — in particular, increase service life and reduce power consumption without sacrificing brightness.

— AC. This abbreviation stands for "alternating current". Such lamps are similar in almost everything to the DC ones described above, differing from them only in the type of power supply.

Service life (energy-saving)

When working in economy mode, the brightness of the backlight is noticeably reduced, on average by 30-50%. With a decrease in brightness, heat dissipation also decreases, which saves the working life of the illuminator, thereby increasing the lamp life. Thus, the ECO mode allows you to extend the lamp life by an average of 30%. If the typical projector lamp life is 4000 hours, regular use of the ECO mode will extend the backlight life to approximately 5500 hours.

Lamp power

The power consumption of the backlight lamp installed in the projector.

Theoretically, the more powerful the lamp, the brighter it is. However, this is only true when comparing lamps of the same type (see above); and even in this case, the brightness may also depend on the nuances of the design. Therefore, when evaluating the capabilities of a lamp, it is worth focus not so much on power, but on the directly claimed brightness in lumens (see below).

But what this parameter directly affects is the total power consumption of the projector: the lamp is the most “greedy” component of the device, compared to it, the power consumption of the rest of the electronics is very small. Also note that many powerful lamps have high heat dissipation and require cooling systems, which affects the size and weight of the projector.

Brightness

The brightness of the image produced by the projector at maximum backlight brightness. Usually, the average brightness of the screen, derived from a special formula, is indicated. The higher it is, the less the image depends on ambient light: a bright projector can provide a clearly visible image even in daylight, but a dim one will require dimming. On the other hand, increasing brightness reduces contrast and accuracy of colour reproduction.

Accordingly, when choosing this parameter, you need to consider the conditions in which you plan to use the projector. So, for office or school/university use, a brightness of at least 3000 lm is desirable — this allows you to get normal visibility without obscuring the room. In turn, among the top models a very low brightness can be found, because. such projectors are usually installed in rooms specially designed for them with good darkness level. And in ultra-compact devices it is impossible to achieve high brightness for technical reasons.

Detailed recommendations on the optimal brightness for certain conditions can be found in special sources. Here we note that anyway, it is worth choosing according to this indicator with some margin. As mentioned above, as brightness increases, contrast and colour quality decrease, and you may need to use the projector at a reduced brightness to achieve the desired picture quality.

Brightness ANSI Lumens

This parameter largely determines the ability of the projector to work in a well-lit room. For a dark room, 1000 lumens is enough to make the projection picture bright, rich, clear and understandable. But when working in a lit room, the projector will need at least 3500-4000 lumens. Do not confuse ANSI lumens with Peak lumens. These are two different brightness standards. To convert one type of brightness to another, you need to multiply Peak lumens by 10-12. The result will be an approximate value of ANSI Lumens.

However, experts do not recommend chasing high ANSI lumen brightness values. There are many professional projectors with brightness up to 3500 lm. The lower the brightness, the lower the power consumption, and at the same time, the life of the illuminator increases. Of course, if the projector will be installed in a work office or classroom where good lighting is required, it is recommended to purchase a model with ANSI Lumens brightness of 4000 lumens and more.

Horizontal frequency

Horizontal frequency supported by the projector.

This parameter is relevant when working with analogue video signal. In such a video, the image is formed line by line: each pixel in the line is highlighted in turn, then the next line is highlighted, and so on. The horizontal frequency describes how many times per second the backlight beam runs from edge to edge of the screen. For normal playback, the projector must support the same refresh rate as the input signal was recorded. However, most models support a fairly wide range of frequencies, and there are no problems with support. Also note that if you are not a professional, then when choosing a projector, it is quite possible to focus on the frame rate (see below) — this parameter is simpler and more intuitive, and support for a certain frame rate automatically means support for the corresponding line rate.

Frame rate

Frame rate, simply put, is the frame rate supported by the projector.

For normal playback, it is highly desirable that the frame rate of the projector match the original frame rate of the video signal. However, most modern models do not support a specific frame rate, but a whole range of frequencies, and quite an extensive one at that.

Note that for viewing most video materials, the range from 24 to 60 fps is quite enough. The exception is 3D content, which may require double the frame rate, up to 120Hz (see " 3D Support " for details).

Sensor size

The size of the sensor affects the depth and final quality of the image. The larger the sensor, the more light it is able to process, which means the picture will be clearer and more structured. The average projector has a sensor of 0.5-0.7″, advanced projectors use sensors of 1.2-1.5″ and more.

Real resolution

The actual image resolution of the projector.

The minimum for modern projectors is actually the VGA standard, which assumes a resolution of 800x600 or close to it. The lowest of today's high-definition standards is HD (720) ; the classic size of such a frame is 1280x720, but there are other options in projectors, up to 1920x720. A more advanced HD format is Full HD (1080), which also has several variations (the most popular is 1920x1080). And among high-end projectors, there are models of Quad HD, Ultra HD (4K) and even Ultra HD (8K) standards.

In general, the higher the resolution, the clearer and more detailed image the projector can produce. On the other hand, this indicator directly affects the cost; and all the benefits of high resolution can only be appreciated if the content being played also corresponds to it.
Epson EB-695Wi often compared