Dark mode
USA
Catalog   /   Home & Renovation   /   Autonomous Power Supply   /   UPS

Comparison Makelsan SE 1000VA 1000 VA vs EnerGenie EG-UPSO-1000 1000 VA

Add to comparison
Makelsan SE 1000VA 1000 VA
EnerGenie EG-UPSO-1000 1000 VA
Makelsan SE 1000VA 1000 VAEnerGenie EG-UPSO-1000 1000 VA
Outdated ProductCompare prices 1
TOP sellers
Typeinverter (online)inverter (online)
Form factorstandard (Tower)standard (Tower)
Input
Input voltage1 phase (230V)1 phase (230V)
Input voltage range110 – 300 V165 – 275 V
Bypass (direct connection)autoauto
Output
Output voltage1 phase (230V)1 phase (230V)
Peak output power1000 VA1000 VA
Rated output power900 W900 W
Output voltage accuracy5 %6 %
Efficiency95 %
Output waveformpure sine wave (PSW)pure sine wave (PSW)
Output frequency45 – 65 Hz
Redundant sockets21
Socket typetype F (Schuko)type F (Schuko)
Reserved C13/C14 connectors3
Battery
Battery(ies) connection to UPS36 V24 V
1st battery voltage12 V12 V
Total battery capacity7 Ah9 Ah
Number of batteries2
Battery typeGEL ( filled with gel)
Full charge time480 min180 min
Max. charging current1 А
Cold start
External battery connection
Protection
Protection
short circuit protection
overload protection
 
data line protection
 
sound alarm
short circuit protection
overload protection
noise filtering
 
emergency cut-off socket
sound alarm
Fuseauto
Control interfaces
RS-232
 
SmartSlot
RS-232
USB
SmartSlot
General
Screen
Operating temperature0 – 40 °C0 – 40 °C
Noise level45 dB50 dB
Dimensions (HxWxD)214x144x414 mm216х144х312 mm
Weight11 kg
Added to E-Catalogjuly 2023november 2022

Input voltage range

In this case, the input voltage range is implied, in which the UPS is able to supply a stable voltage to the load only due to its own regulators, without switching to the battery. For redundant UPSs (see "Type") this range is quite small, approximately 190 to 260 V; for interactive and especially inverter ones, it is much wider. Some UPS models allow you to manually set the input voltage range.

Output voltage accuracy

This parameter characterizes the degree of difference between the AC voltage at the output of the UPS and the perfect voltage, the graph of which has the shape of a regular sinusoid. The perfect voltage is so named because it is the most uniform and creates the least unnecessary load on the connected devices. Thus, the distortion of the output voltage is one of the most important parameters that determine the quality of the power received by the load. A distortion level of 0% means that the UPS produces a perfect sine wave, up to 5% — slight sine wave distortion, up to 18% — strong distortion, from 18% to 40% — a trapezoidal signal, more than 40% — a square wave.

Efficiency

Efficiency (coefficient of performance) in the case of a UPS is the ratio of its output power to the power consumed from the network. This is one of the main parameters that determine the overall efficiency of the device: the higher the efficiency, the less energy the UPS wastes (due to heating parts, electromagnetic radiation, etc.). In modern models, the efficiency value can reach 99%.

Output frequency

The frequency (frequency range) of the AC voltage output by the UPS. For computer technology, the frequency range of 47-53 Hz is considered normal, although the smaller the deviation from the 50 Hz standard, the better. On the other hand, in some UPS models, this frequency can be automatically synchronized with the frequency of the mains — so the power supplied to the load will not differ regardless of whether the load is powered by the mains or from the battery. In this case, a wider frequency range, on the contrary, is more desirable.

Redundant sockets

The number of outlets connected to the power reserve(battery) provided in the design of the UPS. In order for the UPS to fulfill its main role (providing a backup power in case of power outages), the corresponding electrical appliances must be connected to these outlets. The sockets have a standard shape and are compatible with the vast majority of popular 230 V plugs.

At a minimum, the UPS has 1 or 2 outlets and, in more advanced ones, there may be 3 or more.

Reserved C13/C14 connectors

Number of C13/C14 connectors with power reserve provided in the UPS design.

Electrical appliances connected to connectors with a reserve are insured against a power failure in the network - in this case they switch to the battery. The C13/C14 connector itself is also known as a “computer socket”; it supplies the same 230 V as a regular household network, but is not compatible with plugs for traditional sockets, because uses three flat contacts. However, there are adapters between these standards.

At a minimum, the UPS is provided with 1, 2 or 3 C13/C14 connectors for one workstation. In more advanced, so to speak office ones, the number of C13/C14 connectors may be greater - 4 ports, 6 connectors, 8 and even more

Battery(ies) connection to UPS

Rated voltage of external batteries that can be used in the UPS.

For more information about such batteries, see "External battery connection", here it is worth saying that the voltage of the external battery must correspond to the voltage for which the UPS is designed. If these parameters differ, at best, the UPS simply will not start, and at worst, overloads and even a fire are possible.

In general, the more powerful the UPS, the higher the voltage of the external batteries it is designed for. However, there is no strict rule. Some models even allow for multiple voltage options, such as 96/108/120 V. It is also worth noting that a power source with the required voltage can be assembled from several lower voltage batteries connected in series: for example, 3 batteries of 12 V can be used to achieve 36 V.

It is important to emphasize that the standard voltages for most modern UPS systems are multiples of 12 V. However, car batteries cannot be used in these devices. Despite having identical voltages, car batteries are designed for a fundamentally different mode of operation. Using them in a UPS can result in, at best, improper functioning of the device, and at worst, fires and even explosions.

Total battery capacity

The capacity of the battery installed in the UPS. For models with multiple batteries, this is both the total working capacity and the capacity of each individual battery: the batteries in such devices are usually connected in series, so that their total capacity corresponds to the capacity of each individual cell.

Theoretically, a higher battery capacity means the ability to power loads of a given capacity for longer. However, in fact, this parameter is more of a reference than practically significant. The fact is that the actual amount of energy stored by the battery depends not only on the capacity in amp-hours, but also on the voltage in volts; this voltage is often not specified in the characteristics, despite the fact that for accurate calculations it must be known. So when choosing, you should focus on more "close to life" characteristics — first of all, on the directly claimed operating time in different modes (see above).

Number of batteries

The number of batteries supplied with the UPS.

In general, this parameter is more of a reference than practically significant: the number of batteries is selected in such a way as to provide the desired performance — primarily the time of continuous operation. First of all, it is worth paying attention to such characteristics when choosing.
EnerGenie EG-UPSO-1000 often compared