Dark mode
USA
Catalog   /   Sports & Outdoor   /   Cycling & Accessories   /   Bikes

Comparison Formula Hummer AM DD 26 2022 vs Winner Solid FX 26 (3x7 2022

Add to comparison
Formula Hummer AM DD 26 2022
Winner Solid FX 26 (3x7) 2022
Formula Hummer AM DD 26 2022Winner Solid FX 26 (3x7 2022
Outdated ProductOutdated Product
TOP sellers
Model year20222022
Type
mountain (MTB)
mountain (MTB)
Ageteenager
Max weight90 kg
Frame and suspension
Frame size15"14"
Recommended height150 – 170 cm140 – 160 cm
Frame materialsteelaluminium
Suspensionhardtailhardtail
Suspension type (fork)spring-elastomeroil-spring
Fork travel50 mm100 mm
Fork lockout
Fork materialsteel
Folding
Wheels and brakes
Wheel size26 "26 "
TyreWandaMaxxis Ikon
Rim materialaluminiumaluminium
Rimdouble walldouble wall
SpokesSLE
Front brakemechanical discmechanical disc
Front brake modelTektro М280
Front rotor160 mm
Rear brakemechanical discmechanical disc
Rear brake modelTektro М280
Rear rotor160 mm
Front hub modelQuando
Rear hub modelQuando
Handlebar and transmission
Speeds2121
Chainrings33
Freewheel cogs77
Freewheel/cassette modelShimano Tourney TZ500Shimano HG-200, 12-32T
Crank modelProwheel
Bottom bracket modelNecoNeco
Front derailleurSunrun QD-35Shimano Tourney TZ
Rear derailleurShimano Tourney TZ500Shimano Tourney TY300
Shifter typegrip shifttrigger
Shifter modelShimano Tourney RS35Shimano EF-500
Chain modelKMC Z8.1
Handlebar typestraightstraight
General
Equipment
mudguards
chain guard
kickstand
 
chain guard
kickstand
Saddle modelWinner
Pedal modelVP-535
Weight15.8 kg
Added to E-Catalogapril 2023august 2022

Age

The age group to which the bike belongs. This parameter in our catalogue is indicated only for teenage models; if the age group is not specified, it means that the car belongs to “adults” (children’s bikes are placed in a separate section of the catalogue).

Teenager bikes are designed for teens aged about 10-14 years old, for whom children's bikes are already small, but adults are still too big. Such bicycles are similar in design to adults and differ from them mainly in slightly reduced sizes — in particular, the diameter of the wheels (see below) in them usually does not exceed 24 "(there are exceptions, but extremely rarely).

Max weight

The maximum load allowed for a bicycle is, in other words, the maximum weight that it can normally carry in normal use. Of course, when calculating the load, the weight of both the cyclist himself and the additional load that he carries with him is taken into account.

The permissible load must definitely not be exceeded: even if the bike does not break down immediately, off-design loads can weaken the structure, and an accident can occur at any time. Also note that it is desirable to have a certain weight margin — at least 15 – 20 kg: this can be useful in case of transporting heavy loads and will give an additional guarantee in emergency situations (for example, when a wheel gets into a pit). Considering that the average weight of an adult is about 70 – 80 kg, bicycles with a permissible load of up to 100 kg can be classified as "lightweights", from 100 to 120 kg — to the middle category, more than 120 kg — to "heavy trucks".

Frame size

Frame size refers to the distance from the saddle attachment point to the bottom bracket attachment point (axles with gears and pedals). The main parameters that determine the choice of a bike for frame size are the height of the user, the purpose of the bike and the intended riding style.It is also worth considering the female frame, which is lowered, which allows you to ride comfortably even in a skirt or dress.

User height is the most significant factor. In general, the taller the user, the larger the frame should be. The universal formula that allows you to calculate a specific size is as follows: the length of the leg from the groin to the heel in centimeters must be multiplied by 0.6, and then divided by 2.5 — you get the approximate size of the frame in inches. But in the characteristics of brands, the frame can also be indicated in the usual form for measuring size XXS, XS, S, M, L, XL and XXL.

However, note that this value is very arbitrary and approximate, it can only be used for simple bicycles not intended for extreme driving (for example, city bikes, see "Destination"). If you choose a more specialized model (mountain, road, BMX) — it is better to refer to the tables for th...e appropriate type, because. sizes for one height can vary significantly depending on the destination. In addition, different manufacturers have different frame geometry and measurement methods, and therefore, for the most accurate selection, it is recommended to use the manufacturers' own tables.

Note that the optimal frame size is not absolute — in most cases, for the same height, “neighboring” sizes are quite suitable. And here it is worth paying attention to the intended driving style. It is believed that small, well-controlled frames are better suited for extreme variant, and larger and more stable ones are better suited for long-term calm movement.

Recommended height

The user's height recommended by the manufacturer is calculated according to several parameters. One is the wheel diameter, and the second and more important is the frame size. If everything is simple with the wheel size — it is round and always the same, then the frame size complicates the choice. Different types of bicycles have their own frame shape, so even the same size can be suitable for different heights. And this is not to mention the features of the manufacturer, who like to do everything for themselves, and not in a general manner. Therefore, the size of the frame of each bicycle has its own size and it is still better to choose a bicycle by personally “saddling” it. If this is not possible, then our point will tell you what height, according to the manufacturer, this configuration (frame + wheel) of the bike is designed for.

Frame material

Steel. Steel is distinguished by high strength and rigidity, in terms of resistance to deformation, it noticeably surpasses other alloys and is inferior only to carbon fiber. At the same time, such frames dampen vibrations well, are inexpensive, and in the event of a breakdown, they are easily repaired. On the other hand, steel is heavy, three times heavier than aluminium and twice as heavy as titanium; therefore, such frames are found mainly among inexpensive mountain and city bikes, for which a lot of weight is not critical. It is also worth considering that this material is susceptible to corrosion if the protective coating is damaged.

Chromium molybdenum steel(Cro-Mo). An advanced variation of the steel described above. By themselves, chromium-molybdenum alloys have high strength and reliability, and frames made from them can have different wall thicknesses (depending on the load that a particular section is subjected to) — this allows you to slightly reduce weight. Thanks to this, Cro-Mo alloys are found even among fairly advanced road bikes, and they are also popular in touring models. At the same time, such frames cost much more than “ordinary” steel ones.

Aluminium. Actually, bicycles do not use pure aluminium, but various alloys based on it. They differ somewhat in characteristics, but they have a number of common features, the main of whi...ch is low weight combined with good strength characteristics. Due to this, aluminium alloys are widely used in road bikes, as well as in touring mountain bikes (see “Intended Use”). The main disadvantage of these materials is rigidity: they absorb vibrations worse than steel, which is why they are poorly suited for models without shock absorption (see below), and with a strong impact, such a frame will break rather than bend.

Carbon. Resin-bonded carbon fiber composite. It is used in high-end bicycles, as it is very expensive, but it is characterized by very high strength combined with low weight. Moreover, the properties of carbon fiber make it possible to increase strength not just in certain areas, but in certain directions, which contributes to even greater reliability. Note that carbon frames can be either solid (monolithic) or composite — in the latter case, individual elements are connected by metal parts, which reduces the cost, but makes the structure susceptible to corrosion. It is also worth considering that the quality of carbon in general depends on the price category of the bike, and relatively inexpensive frames can be sensitive to strong point impacts. This material is almost impossible to repair.

— Titan. A fairly advanced material that combines high strength, elasticity (which provides soft vibration damping), corrosion resistance and very low weight. However, the cost of such frames is quite high, and therefore they are used mainly in premium mountain and road bikes.

— Magnesium alloy. This material is notable primarily for its very low weight (many times lighter than aluminium), while it has good stiffness and elasticity characteristics, dampens vibrations well, and its price is relatively low. At the same time, magnesium alloys have a number of significant drawbacks. In particular, they do not tolerate impacts, especially point impacts, and are also extremely sensitive to corrosion even with minor damage to the protective coating, which is why such frames are very demanding for care and storage.

Suspension type (fork)

Front fork suspension type (if available, see "Suspension"). All shock absorption systems in bicycles work in two directions: vibration damping (damping) and impact energy absorption (cushioning). Accordingly, they have two main components: a damper and a shock absorber. Depending on the design features of these elements, the following types of depreciation are distinguished:

Spring-elastomer. In this case, the role of a shock absorber is played by an elastic spring, and the role of a damper is played by a rod made of an elastic, well-compressible material, the so-called elastomer. This type appeared as a development of conventional spring damping systems, it is more durable, but poorly suited for low temperatures — the elasticity of the elastomer in such conditions decreases, which negatively affects the characteristics of the system.

Spring-oil. Systems using a spring as a shock absorber and an oil cartridge as a damper. This design is somewhat more resistant to low temperatures than spring-elastomer, and in general has quite good characteristics, due to which it is quite widely used in various types of bicycles. The main disadvantage is the higher (on average) cost.

Air-oil. Combined systems consisting of an air cylinder that acts as a shock absorber and an oil cartridge that acts as a damper. They appeared as a development of “pur...e” air systems, which had a serious drawback: even with high-quality maintenance, the seals wore out rather quickly, which could disable the shock absorber. Air-oil systems are more durable and easier to maintain, while being quite efficient and weighing little. The latter is especially valuable for cross-country (see "Purpose"), where it is required to combine depreciation with a low weight of the machine.

Fork travel

Front fork travel on bicycles with damped suspension (see "Suspension"). Roughly speaking, the travel of a fork is the maximum distance that its size can be reduced by compression during shock absorption. The longer the fork travel, the better the shock absorption and “soft” ride it provides, but not all bikes require a lot of travel. Even within the same type (see “Purpose”), depending on the specific application and riding style, the optimal fork travel will be different — for example, freeride mountain bikes need good shock absorption, and for cross-country, on the contrary, a long fork travel will be redundant.

In general, if you do not plan on extreme cross-country riding or doing cycling tricks, this parameter is not critical. However, when choosing a bike for serious cycling, it is worth checking the recommended fork travel values (according to specialized literature or from professionals) and making sure that the desired model corresponds to them.

Fork lockout

Possibility to disable the shock-absorbing system of the front fork (if available, see "Suspension"). Although shock absorption dampens shock, providing ride comfort, it also has a rather serious drawback — it reduces the efficiency of transferring energy from the pedals to the wheel. By disabling damping, you can significantly increase efficiency in conditions where vibration dampening is less important than good pedaling efficiency — for example, when driving on a flat road, or when driving uphill.

Fork material

— Aluminium. In this case, aluminium is the simplest and most unpretentious option. Its advantages include light weight; on the other hand, in the absence of shock absorption, the steering wheel with such a fork is highly susceptible to vibrations, and in terms of durability, aluminium is somewhat inferior to steel.

— Steel. Another relatively simple option, which at the same time is considered more advanced than the aluminium described above, and is found even in fairly expensive pro-level bikes. This is due to the fact that steel is noticeably stronger and more durable, as it is not as susceptible to "metal fatigue". However such forks weigh a little more than aluminium ones.

— Chromium molybdenum steel. A type of steel that is more advanced than more traditional grades. Among the main advantages of such alloys are high strength and reliability; at the same time, due to such properties, individual elements of the forks can be made thinner, and the forks themselves can be made lighter than ordinary steel ones. The main disadvantage of Cro-Mo steel is the rather high cost.

— Carbon. Lightweight and high-strength carbon fibre forks effectively dampen small bumps in the road under the wheels of the bike and slightly spring on small potholes, thereby providing cushioning on bumpy roads. The carbon fork facilitates the design of the front of the bike. Most often it is found on board "highways" and "gravel roads", less often it is installed in o...ff-road fatbikes. Vulnerable point — carbon forks break under the influence of strong point impacts.
Formula Hummer AM DD 26 2022 often compared