USA
Catalog   /   Tools & Gardening   /   Construction Power Tools   /   Demolition Hammers

Comparison DWT AH16-30 B BMC vs Tekhmann TDH-2260

Add to comparison
DWT AH16-30 B BMC
Tekhmann TDH-2260
DWT AH16-30 B BMCTekhmann TDH-2260
Outdated ProductOutdated Product
TOP sellers
Typeelectricelectric
Specs
Power consumption1700 W2200 W
Impact energy60 J60 J
Impact rate2100 bpm1900 bpm
Chuck typeSDS HexSDS Hex
Chuck size30 mm30 mm
Features
Functions
power button lock
anti-vibration system
 
anti-vibration system
General
In box
additional handle
2 chisels
case
additional handle
2 chisels
case
Weight15.6 kg17.1 kg
Added to E-Catalogdecember 2019december 2018

Power consumption

The power of the engine used in an electric or gasoline demolition hammer. This parameter is used to indicate the total power consumption (useful power is less due to losses in the mechanisms) and, accordingly, it determines the connection requirements: the power grid must be able to deliver the required current without overloads and failures.

In general, the more powerful the tool, the better it is able to handle hard materials or large volumes of work. High power values make it possible to provide adequate energy for each individual impact and/or numerous strokes per minute. At the same time, we can say that power is a secondary parameter, and when choosing, you should look primarily at more practically significant characteristics — the same impact energy or impact frequency.

Impact rate

The maximum number of blows that a demolition hammer can deliver in a minute.

The higher this indicator (with the same impact energy, see above) — the more performant the tool, the better it is suitable for large volumes of work. In addition, the high frequency of operation is also able to compensate to a certain extent for the low impact energy: the pike can overcome a small amount of material in one blow, but if there are many such blows, the difference from a more advanced demolition hammer may not be so noticeable.

For different types of work, the optimal number of strokes will also be different; specific recommendations can be clarified by special sources.

Functions

Soft start. The presence of a soft start system in the design of an electric demolition hammer (see "Type"). The features of the electric motors used in modern power tools are such that when turned on directly, the rotation speed increases very sharply; this leads to rather strong jerks, increasing the risk of letting go of the tool. In addition, starting currents are high, which increases the load on the power grid. To avoid these phenomena, soft start systems are installed: they limit the starting current, allowing you to avoid sudden surges and power surges in the network.

Adjustment of the number of strokes. The presence of a regulator that allows you to change the number of blows (see above) issued by a demolition hammer. This function makes it possible to adjust the mode of operation of the tool depending on the specifics of the situation: for large-scale work, you can bring the number of strokes to the maximum and provide the necessary performance, and for small volumes that require accuracy, reduce the frequency so as not to “gouge too much”.

Maintaining the number of strokes. The presence of a system that automatically regulates the number of blows (see above) issued by a demolition hammer. This system adjusts the operating mode of the tool in such a way that the frequency of impacts remains the same regardless of the load on the working noz...zle. This has a positive effect on the quality of work, and also increases the service life of the demolition hammer and replaceable nozzles.

Power button lock. This term, usually, means the ability to block the power button of the demolition hammer in the on state — so as not to strain your finger, constantly holding it during operation. This is especially useful during long jobs where holding down the button all the time would be quite tiring. In addition, a lock in the off state can also be provided — this function plays the role of protecting against children, because. the blocking is done in such a way that only an adult can turn it off.

Vibration protection system. This term implies various devices and design features — dampers, counterweights, shock-absorbing materials, etc. — reducing the vibration of the tool felt by the operator. Powerful vibrations have a negative impact not only on the accuracy of work, but also on the well-being of the user: with a short exposure they lead to rapid fatigue, with a long exposure they can be harmful to health. To avoid this, various protection systems are provided. At the same time, we note that this function is really necessary only for long-term regular work, so it cannot be called mandatory for modern demolition hammers. In addition, the types of vibration protection and, accordingly, its effectiveness in different models can vary markedly.

Carbon brush replacement indicator. The presence in the design of an electric demolition hammer (see "Type") of an indicator signaling the need to replace the carbon brushes of the engine. Such brushes are one of the most important parts of the collector electric motor: they provide the transfer of electricity from the stationary part of the motor (stator) to the rotating part (rotor). However, upon contact with the carbon brushes, the moving rotor gradually erases them, worsening the contact and reducing the efficiency of the electric motor (up to complete failure); and the inevitable vibration during operation further accelerates this process. In order to keep the engine running, the brushes must be changed periodically. This indicator warns the user about the need for such a replacement; monitoring the condition of the brushes in this way is easier than keeping track of hours of operation, assessing the condition of the tool “by ear”, or using other impromptu methods.

Weight

The total weight of the tool — usually, without taking into account the installed nozzle.

In the case of demolition hammers, weight depends not only and not so much on the comfort of holding in hands, but on specialization. The specifics of the work carried out by this tool is such that a large weight is often an advantage, not a disadvantage. Therefore, modern demolition hammers are conventionally divided into three "weight categories":

— Lightweight — models weighing up to 6 – 7 kg. Designed mainly for work on vertical surfaces, when the tool has to be held on weight.

— Medium — up to 10 – 12 kg. Used primarily for horizontal surfaces.

— Heavy — up to 30 kg or more. They are used in road works, when laying the foundation and for other similar tasks where high power and productivity are required.
DWT AH16-30 B BMC often compared