USA
Catalog   /   Computing   /   Networking   /   Switches

Comparison TP-LINK TL-SG105PE vs D-Link DGS-1005P

Add to comparison
TP-LINK TL-SG105PE
D-Link DGS-1005P
TP-LINK TL-SG105PED-Link DGS-1005P
Compare prices 1Compare prices 3
TOP sellers
Typemanaged 2 level (L2)unmanaged
Mountdesktopdesktop
Bandwidth10 Gbps
MAC address table size2K
Ports
Gigabit Ethernet55
Uplink1
Uplink typeGigabit Ethernet
PoE
PoE (output)802.3af/at802.3af/at
PoE outputs44
PoE output power30 W30 W
Total PoE power65 W60 W
General
PSUexternalexternal
Supply voltage53 В54 В
Operating temperature0 °C ~ +40 °C
Dimensions (WxDxH)100x98x25 mm100x98x28 mm
Weight260 g
Added to E-Catalogdecember 2020july 2019

Type

Unmanaged. The simplest kind of switch that does not have, as the name suggests, the ability to manage; and the possibilities of monitoring the state of the device are usually limited to the simplest indicators in the form of light bulbs (power supply, port activity). The advantages of such models are battery life, ease of use and low cost. The main disadvantage of this type is obvious — the impossibility of configuring the operation parameters. Unmanaged switches are well suited for small LANs like a home or small office where little administration tricks are required; but for large organizations they should not be used.

Customizable. This category includes switches that allow you to change some of the operating parameters. At the same time, the possibilities for such changes are much narrower than in managed models, and the matter is usually limited to disabling individual ports, switching standard speeds for Ethernet connectors (for example, from 100 Mbps to 10 Mbps) and simple monitoring tools like browsing the network statistics. In addition, after reconfiguration, the device, usually, needs to be rebooted — in other words, it is impossible to control the operation of the switch on the fly. However, professional models designed for large networks can also belong to this type.

Managed 2 levels. The term "managed" means that the switch has the ab...ility to reconfigure "on the fly" — in contrast to the configurable models described above. In addition, the overall functionality of such devices in most cases is noticeably wider. And "layer 2" means that the device supports only the second layer of the OSI network model — the channel, which is responsible for physical addressing. In fact, this means that the switch is able to work with the MAC addresses of connected devices, but IP addressing is beyond its capabilities.

— Managed 3 levels. A kind of managed switches (see above) that supports the third level of the OSI network model. This layer is responsible for logical addressing and route definition, which allows the device to work with IP addresses. Due to this, models of this type are considered the most advanced, they often provide not only the traditional features for "switches", but also individual functions of routers. On the other hand, the abundance of features significantly affects the price. These switches are commonly used in data centers, telecommunications companies, and other professional networking environments; it hardly makes sense to purchase such a device for a home or small office.

Bandwidth

The bandwidth of a switch is the maximum amount of traffic that it can handle. Specified in gigabits per second.

This parameter directly depends on the number of network ports in the device (excluding Uplink). Actually, even if the bandwidth is not given in the specifications, it can still be calculated using the following formula: the number of ports multiplied by the bandwidth of an individual port and multiplied by two (since both incoming and outgoing traffic are taken into account). For example, a model with 8 Gigabit Ethernet connectors and 2 SFP ports will have a bandwidth of (8*1 + 2*1)*2 = 20 Gbps.

The choice for this indicator is quite obvious: you need to evaluate the expected traffic volumes in the serviced network segment and make sure that the switch's bandwidth will cover it with a margin of at least 10-15% (this will give an additional guarantee in case of emergency situations). At the same time, if you plan to often work at high, close to maximum, loads, it will not hurt to clarify such a characteristic as the internal bandwidth of the switch. It is usually given in a detailed technical description, and if this value is less than the total throughput, serious problems may arise under significant loads.

MAC address table size

The maximum number of MAC addresses that can be stored in the Switch's memory at the same time. Specified in thousands, for example, 8K — 8K.

Recall that the MAC address is the unique address of each individual network device used in physical routing (at layer 2 of the OSI network model). Switches of all types work with such addresses. And it is worth choosing a switch according to the size of the table, taking into account the maximum number of devices that are supposed to be used with it (including based on the possible expansion of the network). If the table is not enough, the switch will overwrite new addresses over the old ones, which can noticeably slow down the work.

Uplink

The number of Uplink connectors provided in the design of the switch.

“Uplink” in this case is not a type, but a connector specialization: this is the name of the network interface through which the switch (and network devices connected to it) communicate with external networks (including the Internet) or network segments. In other words, this is a kind of "gate" through which all traffic from the network segment served by the switch is transmitted further. Uplink, in particular, can be used to connect to a similar "switch" (for horizontal network expansion) or to a higher level device (like a core switch).

Accordingly, the number of Uplink connectors is the maximum number of external connections that the switch can provide without using additional equipment. The specific type of such a connector may be different, but this is usually one of the varieties of LAN or SFP; see "Uplink type" for details.

Uplink type

The type of connector(s) used as the Uplink interface on the switch.

For more information about such an interface, see above; Here we note that the same network ports are usually used as Uplink as for connecting individual devices to the switch. Here are the main options for such connectors:

— Fast Ethernet — LAN network connector (for twisted pair cables) supporting speeds up to 100 Mbit/s. This speed is considered low by modern standards, while the Uplink port places increased demands on throughput - after all, traffic from all devices served by the switch passes through it. Therefore, in this role, Fast Ethernet ports are used mainly in inexpensive and outdated models.

— Gigabit Ethernet — LAN connector supporting speeds up to 1 Gbit/s. This speed is often sufficient even for a fairly extensive network, while the connectors themselves are relatively inexpensive.

— 2.5 Gigabit Ethernet — LAN connector supporting speeds up to 2.5 Gbit/s.

— 10Gigabit Ethernet — LAN connector supporting speeds up to 10 Gbit/s. Such features allow you to work comfortably even with very large volumes of traffic, but they significantly affect the price of the switch. Therefore, this option is rare, mainly in high-end models.

— SFP. A connector for a fiber optic cable that supports speeds of about 1 Gbit/s. At the same time, over Gigabit Ethernet, which has a similar throughput, this connector has one noticeable advantage - a...longer connection range (usually up to 550 m).

- SFP+. Development of the SFP standard described above. Switches usually provide a connection speed of 10 Gbit/s; like the original standard, it noticeably exceeds the effective range of an Ethernet connection. On the other hand, the real need for such speeds does not arise so often, and SFP+ is quite expensive. Therefore, the presence of such Uplink connectors is typical mainly for high-end models with a large number of ports.

- SFP28. Another development of SFP with increased throughput up to 25 Gbit/s.

- QSFP / QSFP+. The fastest SFPs up to 40 Gbit/s.

Note also that the connectors described above (except perhaps Fast Ethernet) are rarely used as the only type of Uplink input. Combinations of electrical and fiber optic ports—SFP/Gigabit Ethernet and SFP+/10Gigabit Ethernet—have become noticeably more widespread. This provides versatility in connection, allowing you to use the most convenient type of cable in a given situation; and if necessary, of course, you can use all Uplink inputs at once. However, it is worth considering that in some models, Ethernet and SFP interfaces can be combined in one physical connector. So before purchasing, it doesn’t hurt to clarify this nuance separately.

There are also switches that use a combination of two types of SFP - SFP/SFP+; however, there are few such models and they are mainly of the professional level.

Total PoE power

The total output power provided by the switch when powering devices using the PoE standard (see above).

This indicator usually corresponds to the sum of the powers of all outputs — that is, the power of one PoE port, multiplied by their total number. However, the power limits for one output and for the entire switch are somewhat different: if a load with a power equal to the output power of the power supply on this connector can be connected to a single connector, then the total power consumption of all devices connected via PoE should ideally not exceed 75% of the total power supply — this gives an additional guarantee in case of malfunctions. In fact, this means that all PoE outputs cannot be used “to the fullest” at the same time. For example, if there are two such outputs, and one is loaded at 100%, then the second can be loaded with a maximum of 50% — the total power consumption in this case will be the same 75% of the total output. Therefore, a large total power is needed when using the device to the maximum.

Supply voltage

The amount of voltage required by the switch for uninterrupted operation. The power supply voltage of network equipment can vary from 5 V to 230 V, which allows you to power compatible devices from either a low-voltage USB socket on your computer or a standard household outlet. Values in the middle assume that the switch is powered by the appropriate power supply.

Operating temperature

The range of operating temperatures allowed for the switch, in other words, the air temperature at which the device is guaranteed to remain operational.

All modern switches are able to normally endure conditions that are comfortable for a person. Therefore, you should pay attention to this indicator, first of all, in cases where the conditions at the installation site of the switch will differ markedly from home / office; a typical example is the placement of ISP equipment in the attic of a multi-storey building. At the same time, special attention should be paid to the lower limit of the temperature range — not every device is able to operate at sub-zero temperatures. If we talk about specific numbers, then for an unheated room frost resistance is desirable at least at the level of -5 °C, and ideally — — 20 °C(although, of course, this also depends on the climate).

Also note that, in addition to temperature, most switches have restrictions on the relative humidity of the air; these restrictions are usually specified in the documentation.
TP-LINK TL-SG105PE often compared