USA
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison HP 15-dw0000 [15-DW0004UA 7DX04EA] vs Lenovo IdeaPad S340 15 [S340-15IWL 81N800X7RA]

Add to comparison
HP 15-dw0000 (15-DW0004UA 7DX04EA)
Lenovo IdeaPad S340 15 (S340-15IWL 81N800X7RA)
HP 15-dw0000 [15-DW0004UA 7DX04EA]Lenovo IdeaPad S340 15 [S340-15IWL 81N800X7RA]
Outdated ProductOutdated Product
TOP sellers
Typelaptoplaptop
Screen
Screen size15.6 "15.6 "
Screen typeIPSIPS
Surface treatmentanti-glareanti-glare
Screen resolution1920x1080 (16:9)1920x1080 (16:9)
Refresh rate60 Hz60 Hz
Brightness220 nt250 nt
Colour gamut (NTSC)45 %
CPU
SeriesCore i3Core i3
Model7020U8145U
Processor cores22
Total threads44
CPU speed2.3 GHz2.1 GHz
TurboBoost / TurboCore frequency3.9 GHz
3DMark065158 score(s)
Passmark CPU Mark3507 score(s)5495 score(s)
SuperPI 1M12 с10.52 с
RAM
RAM8 GB8 GB
Max. RAM16 GB12 GB
RAM typeDDR4DDR4
RAM speed2133 MHz2400 MHz
Slots2built-in + 1 slot
Graphics card
Graphics card typededicateddedicated
Graphics card seriesNVIDIA GeForceNVIDIA GeForce
Graphics card modelMX110MX110
Video memory2 GB2 GB
Memory typeGDDR5GDDR5
3DMark0614612 points14612 points
3DMark Vantage P9124 points9124 points
Storage
Drive typeSSD M.2 NVMeSSD M.2 NVMe
Drive capacity256 GB256 GB
M.2 drive interfacePCI-E 3.0 2x
Additional 2.5" slot
Connections
Connection ports
HDMI
 
HDMI
v 1.4b
Card reader
 /SD/
 /SD/MMC/
USB 3.2 gen122
USB C 3.2 gen11 pc1 pc
Alternate Mode
LAN (RJ-45)1 Gbps
Multimedia
Webcam1280x720 (HD)1280x720 (HD)
Camera shutter
Speakers22
Keyboard
Backlightis absentwhite
Key designisland typeisland type
Num block
Additional keys4
Input devicetouchpadtouchpad
Battery
Battery capacity41 W*h53 W*h
Operating time8.75 h10 h
Powered by USB-C (Power Delivery)
Fast charge
 /50% in 45 minutes/
 /80% in 60 minutes/
General
Preinstalled OSDOSno OS
Materialmatte plasticaluminium / plastic
Dimensions (WxDxT)359x242x20 mm358x245x18 mm
Weight1.82 kg1.8 kg
Color
Added to E-Catalogdecember 2019november 2019

Brightness

The maximum brightness that a laptop screen can provide.

The brighter the ambient light, the brighter the laptop screen should be, otherwise the image on it may be difficult to read. And vice versa: in dim ambient light, high brightness is unnecessary — it greatly burdens the eyes (however, in this case, modern laptops provide brightness control). Thus, the higher this indicator, the more versatile the screen is, the wider the range of conditions in which it can be effectively used. The downside of these benefits is an increase in price and energy consumption.

As for specific values, many modern laptops have a brightness of 250 – 300 nt and even lower. This is quite enough for working under artificial lighting of medium intensity, but in bright natural light, visibility may already be a problem. For use in sunny weather (especially outdoors), it is desirable to have a brightness margin of at least 300 – 350 nt. And in the most advanced models, this parameter can be 350 – 400 nt and even more.

Colour gamut (NTSC)

The colour gamut of the laptop matrix according to the NTSC colour model.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

Specifically, NTSC is one of the first colour models created back in 1953 for colour television. It is not used in the production of modern LCD matrices, but is used to describe and compare them. NTSC covers a wider range of colours than sRGB, which is standard in computer technology; therefore, even a small number of percentages in this case corresponds to a fairly wide coverage. For example, a value of 72% or more in NTSC is already considered a good value for use in design and graphics. At the same time, the same NTSC figures on different screens may correspond to different sRGB figures; so if accurate colour reproduction is decisive for you, these details should be clarified before buying.

Also note that among individual monitors, it is easier to find a screen with a wide colour gamut; while it will also cost less than a laptop with similar display characteristics. So choosing a laptop with a h...igh-end screen makes sense mainly when portability is as important to you as high-quality colour reproduction.

Model

The specific model of the processor installed in the laptop, or rather, the processor index within its series (see above). Knowing the full name of the processor (series and model), you can find detailed information on it (up to practical reviews) and clarify its capabilities.

CPU speed

The clock speed of the processor installed in the laptop (for multi-core processors, the frequency of each individual core).

Theoretically, a higher clock speed has a positive effect on performance, as it allows the processor to perform more operations per unit of time. However, in fact, the capabilities of the CPU depend on a number of other characteristics — primarily on the series to which it belongs (see above). It even happens that of the two chips, the more performant in the overall result is the slower one. With this in mind, it makes sense to compare by clock frequency only processors of the same series, and ideally, also of the same generation; and the laptop as a whole should be judged by the complex characteristics of the system, as well as by the results of tests (see below).

TurboBoost / TurboCore frequency

Processor clock speed achieved in TurboBoost or TurboCore "overclocking" mode.

Turbo Boost and Turbo Core technologies are used by different manufacturers (Intel and AMD, respectively), but they have the same principle of operation: load distribution from more loaded processor cores to less loaded ones to improve performance. The "overclocking" mode is characterized by an increased clock frequency, and it is indicated in this case.

For more information about clock speed in general, see the relevant paragraph above.

3DMark06

The result shown by the laptop processor in 3DMark06.

This test is primarily focused on testing performance in games — in particular, the ability of the processor to process advanced graphics and artificial intelligence elements. Test scores are reported as scores; the higher this number, the higher the performance of the tested chip. Good 3DMark06 results are especially important for gaming laptops.

Passmark CPU Mark

The result shown by the laptop processor in the Passmark CPU Mark test.

Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).

SuperPI 1M

The result shown by the laptop processor in the SuperPI 1M test.

The essence of this test is to calculate the number "pi" to the millionth decimal place. The time spent on this calculation is the final result. Accordingly, the more powerful the processor, the smaller the result will be (this SuperPI 1M is fundamentally different from many other tests).

Max. RAM

The maximum amount of RAM that can be installed on a laptop. It depends, in particular, on the type of memory modules used, as well as on the number of slots for them. Paying attention to this parameter makes sense, first of all, if the laptop is bought with the expectation of and the amount of actually installed memory in it is noticeably less than the maximum available. So laptops can be upgraded in RAM to 16 GB, 24 GB a>, 32 GB, 48 GB, 64 GB and even more - 128 GB.